skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schmidt, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Satellite‐based Fire radiative power (FRP) retrievals are used to track wildfire activity but are sometimes not possible or have large uncertainties. Here, we show that weather radar products including composite and base reflectivity and equivalent rainfall integrated in the vicinity of the fires show strong correlation with hourly FRP for multiple fires during 2019–2020. Correlation decreases when radar beams are blocked by topography and when there is significant ground clutter (GC) and anomalous propagation (AP). GC/AP can be effectively removed using a machine learning classifier trained with radar retrieved correlation coefficient, velocity, and spectrum width. We find a power‐law best describes the relationship between radar products and FRP for multiple fires combined (0.67–0.76 R2). Radar‐based FRP estimates can be used to fill gaps in satellite FRP created by cloud cover and show great potential to overcome satellite FRP biases occurring during extreme fire events. 
    more » « less
  2. Free, publicly-accessible full text available September 1, 2026
  3. Free, publicly-accessible full text available July 1, 2026